Enhanced Cytotoxic Activity of Mitochondrial Mechanical Effectors in Human Lung Carcinoma H520 Cells: Pharmaceutical Implications for Cancer Therapy

Abstract

8 pags, 5 figsCancer cell mitochondria represent an attractive target for oncological treatment as they have unique hallmarks that differ from their healthy counterparts, as the presence of a stronger membrane potential that can be exploited to specifically accumulate cytotoxic cationic molecules. Here, we explore the selective cytotoxic effect of 10-N-nonyl acridine orange (NAO) on human lung carcinoma H520 cells and compare them with healthy human lung primary fibroblasts. NAO is a lipophilic and positively charged molecule that promotes mitochondrial membrane adhesion that eventually leads to apoptosis when incubated at high micromolar concentration. We found an enhanced cytotoxicity of NAO in H520 cancer cells. By means Fluorescence lifetime imaging microscopy (FLIM) we also confirmed the formation of H-dimeric aggregates originating fromopposing adjacent membranes that interfere with the mitochondrial membrane structure. Based on our results, we suggest the mitochondrial membrane as a potential target in cancer therapy to mechanically control the cell proliferation of cancer cells.This work was supported by the ERC Starting Grant MITOCHON (ERC-StG-2013-338133), ERC Proof of Concept mitozippers (ERC-PoC-2017-780440) and FIS2015-70339-C2-1-R from the Spanish Ministry of Economy MINECO (IL-M); and FIS2015-70339-C2-2-R (MPL and CG)

    Similar works

    Full text

    thumbnail-image

    Available Versions