Regularity theory for non-autonomous problems with a priori assumptions

Abstract

We study weak solutions and minimizers uu of the non-autonomous problems divA(x,Du)=0\operatorname{div} A(x, Du)=0 and minvΩF(x,Dv)dx\min_v \int_\Omega F(x,Dv)\,dx with quasi-isotropic (p,q)(p, q)-growth. We consider the case that uu is bounded, H\"older continuous or lies in a Lebesgue space and establish a sharp connection between assumptions on AA or FF and the corresponding norm of uu. We prove a Sobolev--Poincar\'e inequality, higher integrability and the H\"older continuity of uu and DuDu. Our proofs are optimized and streamlined versions of earlier research that can more readily be further extended to other settings. Connections between assumptions on AA or FF and assumptions on uu are known for the double phase energy F(x,ξ)=ξp+a(x)ξqF(x, \xi)=|\xi|^p + a(x)|\xi|^q. We obtain slightly better results even in this special case. Furthermore, we also cover perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, triple phase, double variable exponent as well as variable exponent double phase energies and the results are new in most of these special cases

    Similar works

    Full text

    thumbnail-image

    Available Versions