Causality and Functional Safety - How Causal Models Relate to the Automotive Standards ISO 26262, ISO/PAS 21448, and UL 4600

Abstract

With autonomous driving, the system complexity of vehicles will increase drastically. This requires new ap- proaches to ensure system safety. Looking at standards like ISO 26262 or ISO/PAS 21448 and their suggested methodologies, an increasing trend in the recent literature can be noticed to incorporate uncertainty. Often this is done by using Bayesian Networks as a framework to enable probabilistic reasoning. These models can also be used to represent causal relationships. Many publications claim to model cause-effect relations, yet rarely give a formal introduction of the implications and resulting possibilities such an approach may have. This paper aims to link the domains of causal reasoning and automotive system safety by investigating relations between causal models and approaches like FMEA, FTA, or GSN. First, the famous “Ladder of Causation” and its implications on causality are reviewed. Next, we give an informal overview of common hazard and reliability analysis techniques and associate them with probabilistic models. Finally, we analyse a mixed-model methodology called Hybrid Causal Logic, extend its idea, and build the concept of a causal shell model of automotive system safety

    Similar works