thesis

Modeling the Effects of AUTOSAR Overhead on Automotive Application Software Timing and Schedulability

Abstract

AUTOSAR (AUTomotive Open System ARchitecture) provides an open and standardized E/E architecture to support modularity, transferability, reusability and scalability of the various components required to implement a function in a vehicle. AUTOSAR has become the de-facto standard for the automotive application development. Safety-critical nature of the automobiles makes the automotive application development challenging, and due to the growing complexity of the software in modern day vehicles, it has become even more challenging. A system is called schedulable when it meets all its real-time requirements under all the possible scenarios. An automotive application should always be schedulable; failing it can have grim consequences. The overhead added by the AUTOSAR stack can significantly change the schedulability of an automotive application. This thesis proposes an overhead-aware method to find a schedulable design configuration for an AUTOSAR application. The method allows measuring the overheads of an AUTOSAR stack implementation and assessing the impacts of the overheads on the timing and schedulability of an application using a timing model of the application. The thesis demonstrates the application of the method on a case study, and finally, it demonstrates the effects of the different types of system overheads on the timing and schedulability on a range of synthetic applications

    Similar works