Incomplete MaxSAT approaches for combinatorial testing

Abstract

We present a Satisfiability (SAT)-based approach for building Mixed Covering Arrays with Constraints of minimum length, referred to as the Covering Array Number problem. This problem is central in Combinatorial Testing for the detection of system failures. In particular, we show how to apply Maximum Satisfiability (MaxSAT) technology by describing efficient encodings for different classes of complete and incomplete MaxSAT solvers to compute optimal and suboptimal solutions, respectively. Similarly, we show how to solve through MaxSAT technology a closely related problem, the Tuple Number problem, which we extend to incorporate constraints. For this problem, we additionally provide a new MaxSAT-based incomplete algorithm. The extensive experimental evaluation we carry out on the available Mixed Covering Arrays with Constraints benchmarks and the comparison with state-of-the-art tools confirm the good performance of our approaches.We would like to thank specially Akihisa Yamada for the access to several benchmarks for our experiments and for solving some questions about his previous work on Combinatorial Testing with Constraints. This work was partially supported by Grant PID2019-109137GB-C21 funded by MCIN/AEI/10.13039/501100011033, PANDEMIES 2020 by Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR), Departament d’Empresa i Coneixement de la Generalitat de Catalunya; FONDO SUPERA COVID-19 funded by Crue-CSIC-SANTANDER, ISINC (PID2019-111544GB-C21), and the MICNN FPU fellowship (FPU18/02929)

    Similar works