Development of a methodology for the diagnosis of internal combustion engines using non-invasive measurements based on the use of interpretable neural networks applicable to databases with multiple annotators

Abstract

Pressure is one of the essential variables that give information for engine condition and monitoring. Direct recording of this signal is complex and invasive, while the angular velocity can be measured easily. Nonetheless, the challenge is to predict the cylinder pressure using the shaft kinematics accurately. On the other hand, the increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk, changes how datasets for supervised learning are built. In these cases, instead of having datasets labeled by one source (which is supposed to be an expert who provided the absolute gold standard), databases holding multiple annotators are provided. However, most state-of-the-art methods devoted to learning from multiple experts assume that the labeler's behavior is homogeneous across the input feature space. Besides, independence constraints are imposed on annotators' outputs. This document presents a Regularized Chained Deep Neural Network to deal with classification tasks from multiple annotators. In this thesis, we develop 2 strategies aiming to avoid intrusive techniques that are commonly used to diagnose Internal Combustion Engines (ICE). The first consist of a time-delay neural network (TDNN), interpreted as a finite pulse response (FIR) filter to estimate the in-cylinder pressure of a single-cylinder ICE from fluctuations in shaft angular velocity. The experiments are conducted over data obtained from an ICE operating in 12 different states by changing the angular velocity and load. The TDNN's delay is adjusted to get the highest possible correlation-based score. Our methodology can predict pressure with an R2>0.9, avoiding complicated pre-processing steps. The second technique, termed RCDNN, jointly predicts the ground truth label and the annotators' performance from input space samples. In turn, RCDNN codes interdependencies among the experts by analyzing the layers' weights and includes l1, l2, and Monte-Carlo Dropout-based regularizers to deal with the overfitting issue in deep learning models. Obtained results (using both simulated and real-world annotators) demonstrate that RCDNN can deal with multi-labelers scenarios for classification tasks, defeating state-of-the-art techniques.La presión es una de las variables esenciales que dan información para el estado del motor y su monitorización. El registro directo de esta señal es complejo e invasivo, mientras que la velocidad angular puede medirse fácilmente. No obstante, el reto consiste en predecir la presión del cilindro utilizando la cinemática del eje con precisión. Por otro lado, la creciente popularidad de las plataformas de crowdsourcing, por ejemplo, Amazon Mechanical Turk, cambia la forma de construir conjuntos de datos para el aprendizaje supervisado. En estos casos, en lugar de tener conjuntos de datos etiquetados por una sola fuente (que se supone que es un experto que proporcionó el estándar de oro absoluto), se proporcionan bases de datos con múltiples anotadores. Sin embargo, la mayoría de los métodos de vanguardia dedicados al aprendizaje a partir de múltiples expertos suponen que el comportamiento del etiquetador es homogéneo en todo el espacio de características de entrada. Además, se imponen restricciones de independencia a los resultados de los anotadores. Este documento presenta una Red Neuronal Profunda Encadenada Regularizada para abordar tareas de clasificación a partir de múltiples anotadores. En esta tesis, desarrollamos dos estrategias con el objetivo de evitar las técnicas intrusivas que se utilizan habitualmente para diagnosticar motores de combustión interna (ICE). La primera consiste en una red neuronal de retardo temporal (TDNN), interpretada como un filtro de respuesta de pulso finito (FIR) para estimar la presión en el cilindro de un ICE de un solo cilindro a partir de las fluctuaciones de la velocidad angular del eje. Los experimentos se realizan sobre datos obtenidos de un ICE que opera en 12 estados diferentes cambiando la velocidad angular y la carga. El retardo de la TDNN se ajusta para obtener la mayor puntuación posible basada en la correlación. Nuestra metodología puede predecir la presión con un R2>0,9, evitando complicados pasos de preprocesamiento.MaestríaMagíster en Ingeniería EléctricaContent 1 Introduction 10 1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 TDNN-based Engine In-cylinder Pressure Estimation from Shaft Velocity Spectral Representation 18 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Time Delay Neural Network fundamentals . . . . . . . . . . . . . . . 19 2.2.2 Harmonic prediction performance based on Magnitude-Squared Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Engine Measurements, Data Acquisition, and Preprocessing . . . . . 22 2.3.2 Pressure signal estimation . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Master Thesis: Content 3 Regularized Chained Deep Neural Network Classifier for Multiple Annotators 37 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Tested datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.2 RCDNN detailed architecture and training . . . . . . . . . . . . . . . 46 3.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.4 Introducing spammers and malicious annotators . . . . . . . . . . . . 55 3.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Final Remarks 58 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.1 TDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 RCDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.1 TDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.2 RCDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Similar works