CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Wireless Low-Power Transfer for Galvanically Isolated High-Voltage Applications
Authors
Olaf Burckhardt
Moritz Hitzemann
+4 more
Martin Lippmann
Alexander Nitschke
Jonas Trachte
Stefan Zimmermann
Publication date
1 January 2022
Publisher
Basel : MDPI
Doi
Cite
Abstract
For various applications, such as gate drivers for transistors, wireless chargers for mobile devices and cars, and isolated measurement equipment, an isolated DC power supply for electronic components is required. In this work, a new concept for an isolated power supply with insulation strength of 50 kV and power transmission of up to 60 W to supply measurement equipment with 12 or 24 V is presented. Furthermore, high overall efficiency of 82.5% at 55 W is achieved. Feasibility is demonstrated in a real application powering data acquisition electronics at high reference potential. Our new concept uses a coreless printed circuit board (PCB) transformer (15 cm × 10 cm × 4 cm and a weight of 480 g) designed for maximum efficiency via a coil layout and close proximity of adjacent coils on one PCB while reaching high isolation strength via the PCB material and potted coils. To increase efficiency, we investigated different coil geometries at different frequencies. A low-cost design consisting of two Qi charging coils mounted on one PCB is compared with our integrated PCB transformers manufactured from a four-layer PCB with ferrites applied on the outside. With this new design, high isolation voltages are possible while reaching high transformer efficiency of up to 90%. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Institutionelles Repositorium der Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repo.uni-hannover.de:1...
Last time updated on 14/11/2022