research

DNA Methylation of the Gonadal Aromatase (cyp19a) Promoter Is Involved in Temperature-Dependent Sex Ratio Shifts in the European Sea Bass

Abstract

15 pages, 9 figures, 1 tableTemperature changes during early embryonic and/or larval stages are able to modify sex ratios in fish and reptiles. However, the underlying mechanism by which temperature is able to modify the molecular pathways that developing gonads follow to become ovaries or testes is still unknown. One of the most interesting questions raised from previous studies with our model species, the European sea bass, was how temperature could affect the developmental fate of the gonads at a time when they were not even formed in the most rudimentary manner. This was the telltale sign of an epigenetic mechanism. In this study, DNA methylation levels of the aromatase promoter were analyzed in European sea bass exposed to different temperatures during early developmental stages. Aromatase is the enzyme that converts androgens (male hormones) into estrogens (female hormones), which are essential for ovarian development in all non-mammalian vertebrates. We show that increased temperature during a critical period in early development is able to increase DNA methylation of the aromatase promoter, preventing aromatase gene expression. We conclude that gonadal aromatase promoter methylation is most likely part of the long-sought-after mechanism connecting temperature and environmental sex determination in vertebratesLN-M and ND were supported by predoctoral scholarships and JV and LR by postdoctoral grants from the Spanish Ministry of Science and Innovation (MCINN). Research was funded by MCINN projects “Sexgene” (AGL2006-01359), “Aquagenomics” (CDS2007-0002), and “Epigen-Aqua” (AGL2010-15939) to FP and by MICINN project BFU2010-18692 and AGAUR grant to LDC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewe

    Similar works