Person Re-Identification Techniques for Intelligent Video Surveillance Systems

Abstract

Nowadays, intelligent video-surveillance is one of the most active research fields in com- puter vision and machine learning techniques which provides useful tools for surveillance operators and forensic video investigators. Person re-identification is among these tools; it consists of recognizing whether an individual has already been observed over a network of cameras. This tool can also be employed in various possible applications, e.g., off-line retrieval of all the video-sequences showing an individual of interest whose image is given as query, or on-line pedestrian tracking over multiple cameras. For the off-line retrieval applications, one of the goals of person re-identification systems is to support video surveillance operators and forensic investigators to find an individual of interest in videos acquired by a network of non-overlapping cameras. This is attained by sorting images of previously ob- served individuals for decreasing values of their similarity with a given probe individual. This task is typically achieved by exploiting the clothing appearance, in which a classical biometric methods like the face recognition is impeded to be practical in real-world video surveillance scenarios, because of low-quality of acquired images. Existing clothing appearance descriptors, together with their similarity measures, are mostly aimed at im- proving ranking quality. These methods usually are employed as part-based body model in order to extract image signature that might be independently treated in different body parts (e.g. torso and legs). Whereas, it is a must that a re-identification model to be robust and discriminate on individual of interest recognition, the issue of the processing time might also be crucial in terms of tackling this task in real-world scenarios. This issue can be also seen from two different point of views such as processing time to construct a model (aka descriptor generation); which usually can be done off-line, and processing time to find the correct individual from bunch of acquired video frames (aka descriptor matching); which is the real-time procedure of the re-identification systems. This thesis addresses the issue of processing time for descriptor matching, instead of im- proving ranking quality, which is also relevant in practical applications involving interaction with human operators. It will be shown how a trade-off between processing time and rank- ing quality, for any given descriptor, can be achieved through a multi-stage ranking approach inspired by multi-stage approaches to classification problems presented in pattern recogni- tion area, which it is further adapting to the re-identification task as a ranking problem. A discussion of design criteria is therefore presented as so-called multi-stage re-identification systems, and evaluation of the proposed approach carry out on three benchmark data sets, using four state-of-the-art descriptors. Additionally, by concerning to the issue of processing time, typical dimensional reduction methods are studied in terms of reducing the processing time of a descriptor where a high-dimensional feature space is generated by a specific person re-identification descriptor. An empirically experimental result is also presented in this case, and three well-known feature reduction methods are applied them on two state-of-the-art descriptors on two benchmark data sets

    Similar works