CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain
Authors
G Chen
K Fan
F Wang
CY Yam
Publication date
1 January 2007
Publisher
'AIP Publishing'
Doi
Cite
Abstract
A density matrix based time-dependent density functional theory is extended in the present work. Chebyshev expansion is introduced to propagate the linear response of the reduced single-electron density matrix upon the application of a time-domain δ -type external potential. The Chebyshev expansion method is more efficient and accurate than the previous fourth-order Runge-Kutta method and removes a numerical divergence problem. The discrete Fourier transformation and filter diagonalization of the first-order dipole moment are implemented to determine the excited state energies. It is found that the filter diagonalization leads to highly accurate values for the excited state energies. Finally, the density matrix based time-dependent density functional is generalized to calculate the energies of singlet-triplet excitations. © 2007 American Institute of Physics.published_or_final_versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 21/04/2021
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/70419
Last time updated on 01/06/2016