Abstract

[EN] Prepolarized MRI (PMRI) is a long-established technique conceived to counteract the loss in signal-to-noise ratio (SNR) inherent to low-field MRI systems. When it comes to hard biological tissues and solid-state matter, PMRI is severely restricted by their ultra-short characteristic relaxation times. Here we demonstrate that efficient hard-tissue prepolarization is within reach with a special-purpose 0.26 T scanner designed for ex vivo dental MRI and equipped with suitable high-power electronics. We have characterized the performance of a 0.5 T prepolarizer module, which can be switched on and off in 200 mu s. To this end, we have used resin, dental and bone samples, all with T1T1 {\mathbf{T}}_{\mathbf{1}} times of the order of 20 ms at our field strength. The measured SNR enhancement is in good agreement with a simple theoretical model, and deviations in extreme regimes can be attributed to mechanical vibrations due to the magnetic interaction between the prepolarization and main magnets.Agencia Valenciana de la Innovaci~o; European Regional Development Fund; Ministerio de Ciencia e Innovacion; This work was supported by the Ministerio de Ciencia e Innovaci~on of Spain through research grant PID2019-111436RBC21. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022). JMG and JB acknowledge support from the Innodocto program of the Agencia Valenciana de la Innovacion (INNTA3/2020/22 and INNTA3/2021/17); Ministerio de Ciencia e Innovaci~on of Spain, Grant/Award Number: PID2019-111436RB-C21; Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana, Grant/Award Number: IDIFEDER/2018/022; Innodocto program of the Agencia Valenciana de la Innovacion, Grant/Award Numbers: INNTA3/2020/22, INNTA3/2021/17Borreguero-Morata, J.; González Hernández, JM.; Pallás Lodeiro, E.; Rigla, JP.; Algarín-Guisado, JM.; Bosch-Esteve, R.; Galve, F.... (2022). Prepolarized MRI of Hard Tissues and Solid-State Matter. NMR in Biomedicine. 35(8):1-10. https://doi.org/10.1002/nbm.473711035

    Similar works

    Full text

    thumbnail-image

    Available Versions