Using ⁸⁷Sr/⁸⁶Sr Ratios to Date Fossil Methane Seep Deposits: Methodological Requirements and an Example from the Great Valley Group, California

Abstract

Methane seep carbonates preserve information about the history of methane seepage and of the fauna inhabiting these ecosystems. For this information to be useful, a reliable determination of the carbonates’ stratigraphic ages is required, but this is not always available. Here we investigate the using strontium isotope stratigraphy to date fossil methane seep carbonates via detailed petrographic and geochemical investigation of the different carbonate phases in biostratigraphically well-dated seep carbonates of Paleozoic, Mesozoic, and Cenozoic age. The best results are obtained from banded, botryoidal rim cements from carbonate phases showing a weak or no cathodoluminescence signal, an oxygen isotope signature close to that of seawater, and the lowest Mn concentrations. We then applied the method to a presumably late Jurassic seep carbonate from the Great Valley Group in California. Strontium isotope ratios of the least diagenetically altered carbonate phases indicate a Tithonian (late Jurassic) age for this seep site, which is in conflict with a recent study that suggested the absence of Jurassic strata from the Great Valley Group

    Similar works