Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics:state-of-the-art and current trends

Abstract

Among all the –omics approaches, proteomics and metabolomics have received increased attention over the last decade. Both approaches have reached a certain level of maturity, showing their relevance in numerous clinical applications, including biomarkers discovery, improved diagnosis, staging, and prognosis of diseases, as well as a better knowledge on various (patho-)physiological processes. Analytically, reversed-phase liquid chromatography – mass spectrometry (RPLC-MS) is considered the golden standard in proteomics and metabolomics, due to its ease of use and reproducilibity. However, RPLC-MS alone is not sufficient to resolve the complexity of the proteome, while very polar metabolites are typically poorly retained. In this context, hydrophilic interaction chromatography (HILIC) represents an attractive complementary approach, due to its orthogonal separation mechanism. This review presents an overview of the literature reporting the application of HILIC-MS in metabolomics and proteomics. For metabolomics the focus is on the analysis of bioactive lipids, amino acids, organic acids, and nucleotides/nucleosides, whereas for proteomics the analysis of complex samples and protein post-translational modifications therein using bottom-up, middle up/down proteomics and intact protein analysis is discussed. The review handles the technological aspects related to the use of HILIC-MS in both proteomics and metabolomics, paying attention to stationary phases, mobile phase conditions, injection volume and column temperature. Recent trends and developments in the application of HILIC-MS in proteomics and metabolomics are also presented and discussed, highlighting the advantages the technique can provide in addition or complementary to RPLC-MS, as well as the current limitations and possible solutions

    Similar works