Design and Analysis of Reversible Data Hiding Using Hybrid Cryptographic and Steganographic approaches for Multiple Images

Abstract

Data concealing is the process of including some helpful information on images. The majority of sensitive applications, such sending authentication data, benefit from data hiding. Reversible data hiding (RDH), also known as invertible or lossless data hiding in the field of signal processing, has been the subject of a lot of study. A piece of data that may be recovered from an image to disclose the original image is inserted into the image during the RDH process to generate a watermarked image. Lossless data hiding is being investigated as a strong and popular way to protect copyright in many sensitive applications, such as law enforcement, medical diagnostics, and remote sensing. Visible and invisible watermarking are the two types of watermarking algorithms. The watermark must be bold and clearly apparent in order to be visible. To be utilized for invisible watermarking, the watermark must be robust and visibly transparent. Reversible data hiding (RDH) creates a marked signal by encoding a piece of data into the host signal. Once the embedded data has been recovered, the original signal may be accurately retrieved. For photos shot in poor illumination, visual quality is more important than a high PSNR number. The DH method increases the contrast of the host picture while maintaining a high PSNR value. Histogram equalization may also be done concurrently by repeating the embedding process in order to relocate the top two bins in the input image's histogram for data embedding. It's critical to assess the images after data concealment to see how much the contrast has increased. Common picture quality assessments include peak signal to noise ratio (PSNR), relative structural similarity (RSS), relative mean brightness error (RMBE), relative entropy error (REE), relative contrast error (RCE), and global contrast factor (GCF). The main objective of this paper is to investigate the various quantitative metrics for evaluating contrast enhancement. The results show that the visual quality may be preserved by including a sufficient number of message bits in the input photographs

    Similar works