CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Dry etching of monocrystalline silicon using a laser-induced reactive micro plasma
Authors
Martin Ehrhardt
Robert Heinke
Pierre Lorenz
Klaus Zimmer
Publication date
1 January 2021
Publisher
Amsterdam : Elsevier
Doi
Cite
Abstract
Dry etching is a prevalent technique for pattern transfer and material removal in microelectronics, optics and photonics due to its high precision material removal with low surface and subsurface damage. These processes, including reactive ion etching (RIE) and plasma etching (PE), are performed at vacuum conditions and provide high selectivity and vertical side wall etched patterns but create high costs and efforts in maintenance due to the required machinery. In contrast to electrically generated plasmas, laser-induced micro plasmas are controllable sources of reactive species in gases at atmospheric pressure that can be used for dry etching of materials. In the present study, we have demonstrated the laser-induced plasma etching of monocrystalline silicon. A Ti:Sapphire laser has been used for igniting an optically pumped plasma in a CF4/O2 gas mixture near atmospheric pressure. The influence of process parameters, like substrate temperature, O2 concentration, plasma-surface distance, etching duration, pulse energy and crystal orientation on etching rate and surface morphology has been investigated. Typical etching rates of 2–12 µm x min−1 can be achieved by varying mentioned parameters with a decreasing etching rate during the process. Different morphologies can be observed due to the parameters set, smooth as well as rough surfaces or even inverted pyramids. The presented etching method provides an approach for precise machining of silicon surfaces with good surface qualities near atmospheric pressure and sufficiently high material removal rates for ultraprecise surface machining. © 2021 The Author(s
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:7c597a7ae...
Last time updated on 12/12/2021
Sustaining member
Repositorium für Naturwissenschaften und Technik (TIB Hannover)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:oa.tib.eu:123456789/8078
Last time updated on 23/07/2022