CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Trees For Correlated Survival Data By Goodness Of Split, With Applications To Tooth Prognosis
Authors
Juanjuan Fan
Michael Leblanc
+3 more
Richard A. Levine
Martha E. Nunn
Xiao Gang Su
Publication date
1 September 2006
Publisher
'Information Bulletin on Variable Stars (IBVS)'
Abstract
In this article the regression tree method is extended to correlated survival data and applied to the problem of developing objective prognostic classification rules in periodontal research. The robust logrank statistic is used as the splitting statistic to measure the between-node difference in survival, while adjusting for correlation among failure times from the same patient. The partition-based survival function estimator is shown to converge to the true conditional survival function. Tooth loss data from 100 periodontal patients (2,509 teeth) was analyzed using the proposed method. The goal is to assign each tooth to one of the five prognosis categories (good, fair, poor, questionable, or hopeless). After the best-sized tree was identified, an amalgamation procedure was used to form five prognostic groups. The prognostic rules established here may be used by periodontists, general dentists, and insurance companies in devising appropriate treatment plans for periodontal oatients. © 2006 American Statistical Association
Similar works
Full text
Available Versions
University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:stars.library.ucf.edu:scop...
Last time updated on 18/10/2022