We present an experimental evaluation of a multi-aperture laser transmissometer system which profiles long-term laser beam statistics over long paths. While the system was originally designed to measure the aerosol extinction rate, the beam profiling capabilities of the transmissometer system also allows experimental observations of Gaussian beam statistics in weak and strong turbulence. Additionally, measurement of long-term beam spread at the receiver allows the system to estimate a path-averaged C n2 , including in strong turbulence regimes where scintillometers experience saturation effects. Additionally, a phase-frequency correlation technique for synchronizing with transmitter ON/OFF modulation in the presence of background ambient light is presented. In application, our ruggedized and weather resistant laser transmissometer system has significant advantages for the measurement and study of aerosol concentration, absorption, scattering, and turbulence properties over multi-kilometer paths, which are crucial for directed energy systems, ground-level free-space optical communication systems, environmental monitoring, and weather forecasting