Piezoelectric Actuation Of Crack Growth Along Polymer/Metal Interfaces In Adhesive Bonds

Abstract

A new experimental technique for determining mechanical properties of the polymer/metal interface was developed by replacing the conventional mechanical testing machine with a piezoelectric actuator. The actuator was made from a thin ferroelectric ceramic beam attached to a bilayer polymer/metal composite specimen. The trilayer specimen was loaded by applying ac electric fields on the piezoelectric actuator to drive crack growth along the polymer/metal interface. Using this technique, fatigue crack growth behavior of epoxy/ aluminum interface was studied as a function of electric field, crack length and cyclic frequency. The crack growth rate was found to depend on the magnitude of the applied electric field and decrease with testing frequency

    Similar works