High-performance Ni/Yb2O3/TaN Programmable Memory Cell for Nonvolatile Memory Applications

Abstract

Resistive switching in Ni/Yb2O3/TaN programmable memory cells was investigated. We proposed a rearrangement of oxygen vacancies under electric field plays role in resistive switching. Under negative bias, oxygen vacancies or other metallic defects migrate through Yb2O3 oxide and SET occurs. A reproducible resistance switching behavior was observed with high resistance ratio of about 105 with excellent data retention, and good immunity to read disturbance, are also revealed. In particular, the simple sandwich structure and excellent electrical performance of the memory cell making them ideal for the basis for highspeed, high-density, nonvolatile memory applications

    Similar works