Three-Dimensional Physico-chemical Characterization 1 of Coarse Atmospheric Particles from Urban and Arid Environment of India: An Insight into Particle Optics
Aerosol particles scatter and absorb solar radiation and affects earth's radiation budget. The aerosol particles are usually non-spherical in shape and inhomogeneous in chemical composition. For simplicity, these particles are approximated as homogeneous spheres/spheroids in radiative models and in retrieval algorithms of the ground and spaceborne observations. The lack of information on particle morphology (especially shape), chemical composition (that govern their spectral refractive indices) and most importantly internal structure (three Dimensional, 3D spatial distribution of chemical species) lead to uncertainty in the numerical estimation of their optical and radiative properties. Here, we present a comprehensive assessment of the particles' volumetric composition. The particles were collected from typical arid and urban environments of India and subjected to Focused Ion-Beam (FIB) coupled with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscope (EDS). Particles from the arid environment were observed to be composed of Fe, Ca, C, Al, and Mg rich shell with Si and O rich core opposed to those from urban environment consisting Hg, Ag, C, S and N rich shell with Cu and S rich core. Based on the homogeneous sphere/spheroid assumption, conventional SEM-EDS and FIB-SEM-EDS results, different particle model shapes [single species homogeneous sphere (S1) and spheroid (SPH1); multiple species homogeneously mixed sphere (S2) and spheroid (SPH2); and core-shell (CS)] were considered for simulating their respective optical properties; SSA (Single Scattering Albedo) and g (Asymmetric parameter). The effect of internal structure on SSA was found to be prominent in particles having low value of the imaginary part of refractive index (k). While the same was observed to be low (nearly negligible) for the particle with the high value of “k”. The particles rich in copper are found to be highly absorbing in nature which causes positive radiative forcing