CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Growth kinetics changes of vertically aligned carbon nanostructures syntheslsed at low substrate temperatures
Authors
GY Chen
S Henley
+3 more
CHP Poa
SRP Silva
V Stolojan
Publication date
24 January 2020
Publisher
Abstract
Carbon nanotubes and nanofibres are typically synthesised under substrate temperatures above 600°C. Here we investigate the influence of the substrate temperature and the plasma conditions on the growth of vertically aligned carbon nanostructures using Direct Current plasma Chemical Vapour Deposition, at temperatures below 550°C. These nanostructures are produced using a C 2H2 based plasma and nickel thin film as the catalyst. We found that preferential deposition of amorphous carbon takes place as the synthesis temperature is lowered below 500°C. However, lowering the carbon concentration in the gas feedstock (<2% cone.) allows for the nucleation of nanofibre-like structures, whilst balancing the buildup of amorphous carbon. This method allows for the synthesis of vertically aligned structures at low temperatures (around 230°C) without intentional heating, while still achieving reasonable average growth rates up to 27 nm/min. The only heating was provided by the plasma, which typically consumes ∼ 4 W/cm2. It was found that by varying the applied plasma bias during high temperature synthesis, we increased the growth rate up to 165 nm/min. Based on the observations of experimental process variations and the morphology of the synthesised structures, we propose a growth mechanism for such low temperature growth and examine the resulting morphology changes. © 2005 Materials Research Society
Similar works
Full text
Available Versions
University of Surrey
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:alma.44SUR_INST:1113945118...
Last time updated on 01/08/2022