A Multi-stack Simulation Framework for Vehicular Applications Testing

Abstract

The vast majority of vehicular applications leverage vehicle-to-everything communications (V2X) to increase road safety, optimize the available transportation resources, and improve the user experience. Because of the complexity and the high deployment costs of vehicular applications, it is usually convenient to extensively test them by simulation. We present an open-source simulation framework for the ns-3 simulator, featuring state-of-the-art vehicular communication models, in which the mobility is managed by the SUMO (Simulation of Urban MObility) simulator. Unlike other simulation frameworks, where the user is mostly limited to a single communication stack, our framework unifies multiple stacks under a single open-source repository. The framework is designed to make it easier to configure the communication stacks, and to enable a fast and easy deployment of vehicular applications. It comes with the support for centralized and distributed vehicular network architectures, embedding the IEEE 802.11p, 3GPP C-V2X Mode 4 and LTE communication stacks, and with vehicular messages dissemination stacks compliant with ETSI standards. We also present two sample applications thought to show the potentiality of the framework, namely an area speed advisory and an emergency vehicle alert

    Similar works