A REVIEW ON PRESENT AND FUTURE OUTLOOK OF 3D PRINTING IN TRANSDERMAL DRUG DELIVERY SYSTEMS

Abstract

Objective The suitability of different printing processes for the direct or indirect printing of microneedle arrays, as well as the modification of their surface with drug-containing coatings, has been investigated. Methodology 3D printing refers to a group of technologies that use numerically controlled apparatus to create a physical object from a virtual representation. The transdermal route has been introduced as an alternative to the bolus system. The skin is also identified to pose a barrier to permit molecules. The loss that occurred is compensated by transdermal delivery. 3D printing has several advantages in terms of waste reduction, design flexibility, and lowering the high cost. The compatibility of 3D printing techniques with printed medicine products is a factor in their selection. The variety of printable materials that are presently being used or could be utilized for 3D printing of transdermal drug delivery (TDD) devices. 3D printing has the potential to change today's "one size fits all" production and be used across the medication development process. Conclusion The impact and limitations of using 3D printing as a production process for transdermal drug delivery devices are required to be evaluated. This review discusses the present and future overlook of 3D printing technology of transdermal drug delivery system and some advantages and disadvantages of 3D printing technology over conventional drug delivery approach

    Similar works