NOVEL HYDROXYL TERMINATED DENDRIMERS AS POTENTIAL DRUG CARRIERS: SUSTAINED RELEASE, HEMOLYSIS AND CYTOTOXICITY STUDY

Abstract

Objective: Potential of novel hydroxyl terminated dendrimer generations G1(OH)8, G2(OH)32 and G3(OH)128 as solubility enhancers of model drug ketoprofen was evaluated. G3(OH)128 dendrimer was further explored as the novel carrier for sustained release of ketoprofen. Cytotoxicity and hemolytic potential of G3(OH)128 dendrimer were studied to evaluate toxicity of dendrimer. Methods: Higuchi and Connors method was employed to evaluate improved solubility of ketoprofen at different pH and dendrimer generation. Ketoprofen was loaded into G3(OH)128 dendrimer by inclusion complex method. Ketoprofen loaded dendrimer was characterized by Flourier Transform infrared spectroscopy. Sustained release of ketoprofen from ketoprofen loaded dendrimers was studied and compared to that of free ketoprofen. Cytotoxicity of dendrimers on A-549 cell lines were studied by MTT assay technique. Hemolytic potential of G3 dendrimer was also studied. Results: Solubility of practically insoluble ketoprofen was improved up to 0.77-4.89 mg/ml by dendrimer generations. Solubility of ketoprofen was increased with increase in pH, concentrationand generation number of dendrimer. Ketoprofen was released relatively slowly from ketoprofen loaded dendrimer compared to free ketoprofen. Cytotoxicity and hemolytic assay revealed that dendrimers were less toxic compared to PAMAM dendrimers. Conclusion: Improved solubility of ketoprofen by dendrimer generations, its slow release from G3(OH)128 dendrimer and cytotoxicity and hemolytic assay showed dendrimers have potential as drug carriers. Keywords: Triazine Based Dendrimer, Sustained Release, Cytotoxicity, Hemolysis, Ketoprofen, Encapsulation

    Similar works