Metallic Nanoparticles Generation by Repetitive Pulsed Laser for Applications in Bio-Medicine

Abstract

A Nd:YAG pulsed laser operating at the 1064 nm wavelength, the 3 ns pulse duration, the 1010 W/cm2 intensity and the 10 Hz repetition rate is employed to irradiate biocompatible metallic targets based on Au, Bi and Ag placed in water. The laser-matter interaction produces nanometric spherical particles. The concentration of the solution with nanoparticles is controllable by the laser parameters, the ablative emission process, the irradiation time and the water’s volume. Generally, nanoparticles of about 10 nm in size and concentrations of the order (0.1 ÷ 10) mg/ml are prepared to be injected in cell cultures or in living systems (mice). The nanoparticles introduction in the extra and intra cellular liquids improves the bio-imaging of the tissue and organs by using fluorescence techniques. Moreover, if these nanoparticles are concentrated in tumour cells, they make possible high efficiency radio-therapy and thermal-therapy treatments, as it will be presented and discussed

    Similar works