Numerical Modelling and Experimental Verification of New Observations of the Two Phases Interaction in a Vertical and Inclined Closed Wickless Heat Pipe

Abstract

 الأنابيب الحرارية واحدة من الحلول الحديثة لتحرير الطاقة الحرارية من المصادر ذات درجات الحرارة العالية أو للحصول على توزيع منتظم للحرارة في المستودعات السائلة أو الصلبة. ان التداخل بين الطورين السائل والغازي في داخله قد تم فرضه بطريقة تقليدية من قبل الباحثين ولم يتم الكشف عنه بدقة. في هذه الدراسة تم اجراء تقريباً 480 حل رياضي وفحص تجريبي مختبري لتأكيد المشاهدات التي نشرناها سابقاً حول انماط الجريان الفضائية غير المنتظمة لكل من الطورين داخل انبوب حراري مصنوع من النحاس وبدون فتيلة يعتمد على التدوير الحراري ومملوء جزئيا بالماء. تم الحصول على النتائج الرياضية من موديل رياضي حسابي ديناميكي انتقالي بالابعاد الثلاثية تم تضمينه مختلف المتغيرات لتقريبه للحالة الواقعية على الرغم من التعقيد في طرق الحسابات وزيادة المدة اللازمة لاكمال التشغيل للمحاكاة الرياضية. ان نسبة التوافق العالية بين نتائج الموديل الرياضي والفحص المختبري لطريقة وقيم التوزيع الحراري تؤكد صحة نتائج الموديل الرياضي.  ان المخططات الكنتورية المستحصلة من الموديل الرياضي والخاصة بنمط جريان وتوزيع الطورين داخل الأنبوب الحراري، تبين ان الطورين يجريان بنمط فضائي غير منتظم وغير مستقر وغير مستمر على شكل واحد. كلا الطورين يعانيان من انتقال للحرارة وتغير بالطور مع بعضهما خلال الجريان للاعلى (البخار) او الجريان للاسفل (السائل المتكثف). ازداد الاداء الحراري بنسبة (+10%) نتيجة الميلان من الوضع العمودي الى زاوية º60، ومن ثم انخفض الاداء الحراري بنسبة (-15%) بزاوية º15 (هذه القيم عند نسبة ملئ 50% وطاقة حرارية مسلطة 200 واط). هذا بسبب كون ميلان الانبوب الحراري يؤدي الى تنظيم نمط الجريان الفضائي وتقريبه الى الدوران المنتظم، كما أنه يؤدي الى عدم تجانس عمليتي التبخر والتكثف وبالتالي يؤدي الى انخفاض الاداء الحراري ككل.Heat pipes are one of the modern solutions for heat release from hot sources or for heat homogeneity in liquid or solid reservoirs. The interactions between the two phases of its working fluid are suggested classically by researchers and still not discovered deeply. In this study about 480 experimental and numerical tests are carried out to confirm the previous published observation of spatial flow patterns of the two phases inside a wickless copper Thermosyphon Heat Pipe THP partially filled with water. Numerical results are gotten from a three dimensional transient Computational Fluid Dynamics 3DCFD numerical solution. Different factors are included into 3DCFD model to reach reality in results and suffering from complex calculation procedures and increase simulation running time. The high agreement percentages between the experimental and 3DCFD for the temperatures distribution profile and magnitudes confirm the 3DCFD results. 3DCFD solution contours of steam volume fractions SVF show that both phases flow in a 3D spatial, non-steady and non-continues flow streams. Both phases suffering phase change and heat transfer from each to other during flow up (steam) and flow down (condensate). Thermal performance increase about (+ve. (10%)) due to inclination from vertical to 60º then falling to (-ve. (15%)) at 15º (for filling ratio 50% and heat supplied 200W). that’s because inclination lead the complex spatial flow to be a uniform circulation flow, hence it’s lead to non-homogeneity in evaporation and condensation processes and finally result in reduction of thermal performance

    Similar works