Two Generations of CubeSat Missions (CSSWE and CIRBE) to Take on the Challenges of Measuring Relativistic Electrons in the Earth’s Magnetosphere

Abstract

The Colorado Student Space Weather Experiment (CSSWE) CubeSat, carrying the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) to measure 0.5 to \u3e3.8 MeV electrons and 8-40 MeV protons, operated for over two years, 2012-2014, in low Earth orbit (LEO). There have been 25 peer-reviewed publications, including two in Nature, and five Ph.D. dissertations associated with CSSWE. Another 3U CubeSat mission: Colorado Inner Radiation Belt Electron Experiment (CIRBE), has been under development to address an unresolved science question: Where is the break point in terms of electron energy below which electrons can be transported into the inner belt from the outer belt but above which they cannot? This requires clean measurements of energetic electrons with fine energy resolution in an environment where all instruments are subject to the unforgiving penetration from highly energetic protons (tens of MeV to GeV). An advanced version of REPTile has been designed and built, REPTile-2. It has been integrated into the CIRBE bus, which has active attitude control, deployable solar panels, and a S-band radio, provided by Blue Canyon Technologies. CIRBE advances our science capabilities and has significantly improved performance vs. CSSWE and is ready to be launched into a LEO in early 2023

    Similar works