Deep learning for digitized histology image analysis

Abstract

โ€œCervical cancer is the fourth most frequent cancer that affects women worldwide. Assessment of cervical intraepithelial neoplasia (CIN) through histopathology remains as the standard for absolute determination of cancer. The examination of tissue samples under a microscope requires considerable time and effort from expert pathologists. There is a need to design an automated tool to assist pathologists for digitized histology slide analysis. Pre-cervical cancer is generally determined by examining the CIN which is the growth of atypical cells from the basement membrane (bottom) to the top of the epithelium. It has four grades, including: Normal, CIN1, CIN2, and CIN3. In this research, different facets of an automated digitized histology epithelium assessment pipeline have been explored to mimic the pathologist diagnostic approach. The entire pipeline from slide to epithelium CIN grade has been designed and developed using deep learning models and imaging techniques to analyze the whole slide image (WSI). The process is as follows: 1) identification of epithelium by filtering the regions extracted from a low-resolution image with a binary classifier network; 2) epithelium segmentation; 3) deep regression for pixel-wise segmentation of epithelium by patch-based image analysis; 4) attention-based CIN classification with localized sequential feature modeling. Deep learning-based nuclei detection by superpixels was performed as an extension of our research. Results from this research indicate an improved performance of CIN assessment over state-of-the-art methods for nuclei segmentation, epithelium segmentation, and CIN classification, as well as the development of a prototype WSI-level toolโ€--Abstract, page iv

    Similar works