Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo
Abstract
OBJECTIVE: Cigarette smoking is the main risk factor for bladder cancer development. Among the mediators of this effect of smoking is nuclear factor-kappa B. Curcumin suppresses cellular transformation by downregulating the activity of nuclear factor-kappa B. Prima-1 is a compound that induces apoptosis in human tumor cells, restoring the function of mutant p53. Our study aimed to evaluate the effects of curcumin and prima-1 in an animal model of bladder cancer. METHODS: Tumor implantation was achieved in six- to eight-week-old female C57BL/6 mice by introducing MB49 bladder cancer cells into the bladder. Intravesical treatment with curcumin and Prima-1 was performed on days 2, 6, 10, and 14. On day 15, the animals were sacrificed. Immunohistochemistry was used to determine the expression of cyclin D1, Cox-2, and p21. Cell proliferation was examined using PCNA. RESULTS: Animals treated with curcumin exhibited a higher degree of necrosis than animals in other groups. Immunohistochemistry showed reduced expression of cyclin D1 in the curcumin-treated group. All of the cells in mice treated with curcumin were p21 positive, suggesting that the p53 pathway is induced by this compound. Prima-1 did not induce any change in tumor size, necrosis, cell proliferation, or the expression of proteins related to the p53 pathway in this animal model. CONCLUSION: Curcumin showed activity in this animal bladder cancer model and probably acted via the regulation of nuclear factor-kappa B and p53. Therefore, curcumin is a good choice for the use in clinical trials to treat superficial bladder cancer as an alternative to bacillus Calmette-Guerin. In contrast, Prima-1 does not seem to have an effect on bladder cancer