Ecpoc: an evolutionary computation-based proof of criteria consensus protocol

Abstract

Recently, blockchain technology has been applied in many domains in our life. Blockchain networks typically utilize a consensus protocol to achieve consistency among network nodes in a decentralized environment. Delegated Proof of Stake (DPoS) is a popular mechanism adopted in many networks such as BitShares, EOS, and Cardano because of its speed and scalability advantages. However, votes that come from nodes on a DPoS network tend to support a set of specific nodes that have a greater chance of becoming block producers after voting rounds. Therefore, only a small group of nodes can be selected to become block producers. To address this issue, we propose a new protocol called Evolutionary Computation-based Proof of Criteria (ECPoC), which uses ten criteria to evaluate and select a new block procedure in each round. Next, a set of optimal weights used for maximizing the network’s decentralization level is identified through the use of evolutionary computation algorithms. The experimental results show that our consensus significantly enhances the degree of decentralization in the selection process of witness nodes compared to DPoS. As a result, ECPoC facilitates fairness between nodes and creates momentum for blockchain network developmen

    Similar works