Modulation of Near-Inertial Motions On the Mississippi-Alabama Shelf

Abstract

In this study, we diagnose the time variability and vertical structure of the high- and low-frequency motions on the Mississippi-Alabama Shelf as observed with a bottom-mounted ADCP (Acoustic Doppler Current Profiler) and CTD (Conductivity-Temperature-Depth). The mooring was deployed about 20 km offshore of Mobile Bay for a period from May 17 to August 23, 2018. At this latitude, the diurnal land and sea breeze has the same frequency as the local inertial frequency. Similar to the wind, the observed high-frequency baroclinic velocities (\u3e 30 cm/s) have a broadband diurnal peak and more energy in the clockwise motions. About 60% of the variance in these motions is due to mode 1, which resembles a two-layer structure with surface and bottom velocities that are 180∘ out of phase. These are all characteristics of wind-driven motions that interact with the coastal wall. The month of June features the best conditions for energetic near-inertial motions: upwelling, consistent sea breeze, and a more continuous instead of a two-layer stratification. This causes near-inertial energy to be also projected on a baroclinic mode 2, featuring a subsurface maximum. This maximum may be attributed to the downward propagation of near-inertial internal wave energy. The observed alongshore low-frequency flows and the up- and downwelling are mostly driven by low-frequency winds. About 83% of the variance in the alongshore low-frequency flows is due to mode 1, which eigenfunction resembles a vertically sheared flow. We find that the amplitude of the near-inertial motions is modulated by the up- and downwelling. During downwelling, the near-inertial baroclinic kinetic energy is greatly reduced because of a reduction in stratification and weaker diurnal winds

    Similar works

    Full text

    thumbnail-image

    Available Versions