Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes

Abstract

Traditional methods for aerosol retrieval and atmospheric correction of remote sensing data over water surfaces are based on the assumption of zero water reflectance in the near-infrared. Another type of approach which is becoming very popular in atmospheric correction over water is based on the simultaneous retrieval of atmospheric and water parameters through the inversion of coupled atmospheric and bio-optical water models. Both types of approaches may lead to substantial errors over optically-complex water bodies, such as case II waters, in which a wide range of temporal and spatial variations in the concentration of water constituents is expected. This causes the water reflectance in the near-infrared to be non-negligible, and that the water reflectance response under extreme values of the water constituents cannot be described by the assumed bio-optical models. As an alternative to these methods, the SCAPE-M atmospheric processor is proposed in this paper for the automatic atmospheric correction of ENVISAT/MERIS data over inland waters. A-priori assumptions on the water composition and its spectral response are avoided by SCAPE-M by calculating reflectance of close-to-land water pixels through spatial extension of atmospheric parameters derived over neighboring land pixels. This approach is supported by the results obtained from the validation of SCAPE-M over a number of European inland water validation sites which is presented in this work. MERIS-derived aerosol optical thickness, water reflectance and water pigments are compared to in-situ data acquired concurrently to MERIS images in 20 validation match-ups. SCAPE-M has also been compared to specific processors designed for the retrieval of lake water constituents from MERIS data. The performance of SCAPE-M to reproduce ground-based measurements under a range of water types and the ability of MERIS data to monitor chlorophyll-a and phycocyanin pigments using semiempirical algorithms after SCAPE-M processing are discussed. It has been found that SCAPE-M is able to provide high accurate water reflectance over turbid waters, outperforming models based on site-specific bio-optical models, although problems of SCAPE-M to cope with clear waters in some cases have also been identified. © 2009 Elsevier Inc. All rights reserved

    Similar works