Facilitating dynamic network control with software-defined networking

Abstract

This dissertation starts by realizing that network management is a very complex and error-prone task. The major causes are identified through interviews and systematic analysis of network config- uration data on two large campus networks. This dissertation finds that network events and dynamic reactions to them should be programmatically encoded in the network control program by opera- tors, and some events should be automatically handled for them if the desired reaction is general. This dissertation presents two new solutions for managing and configuring networks using Software- Defined Networking (SDN) paradigm: Kinetic and Coronet. Kinetic is a programming language and central control platform that allows operators to implement traffic control application that reacts to various kinds of network events in a concise, intuitive way. The event-reaction logic is checked for correction before deployment to prevent misconfigurations. Coronet is a data-plane failure recovery service for arbitrary SDN control applications. Coronet pre-plans primary and backup routing paths for any given topology. Such pre-planning guarantees that Coronet can perform fast recovery when there is failure. Multiple techniques are used to ensure that the solution scales to large networks with more than 100 switches. Performance and usability evaluations show that both solutions are feasible and are great alternative solutions to current mechanisms to reduce misconfigurations.Ph.D

    Similar works