Anionic liposomes inhibit human immunodeficiency virus type 1 (HIV-1) infectivity in CD4\u3csup\u3e+\u3c/sup\u3e A3.01 and H9 cells

Abstract

Immunodeficiency viruses undergo fusion with liposomes containing anionic phospholipids (Larsen et al., 1990). We have investigated the effect of liposomes composed of cardiolipin, phosphatidylserine or phosphatidylinositol, on the infectivity of three strains of HIV-1 in A3.01 and H9 cells, measured by p24 (gag) production in the medium. The infectivity of HIV-1 in A3.01 or H9 cells was inhibited by the presence of cardiolipin liposomes during a 2 h infection period, with IC50\u27s of 23.0, 4.8, and 5.0 μM phospholipid, respectively, for the different strains. Liposomes composed of phosphatidylserine or phosphatidylinositol were ineffective under similar conditions. However, prolonged pre-incubation of the virus with these liposomes also inhibited infectivity. Inhibition of virus binding to cells could not account for the inhibition of infectivity. We propose that the fusion products of HIV-1 and anionic liposomes are impaired in their ability to fuse with the plasma membrane

    Similar works