Analysis and design of innovative magnetic wedges for high efficiency permanent magnet synchronous machines

Abstract

The global decarbonization targets require increasingly higher levels of efficiency from the designers of electrical machines. In this context, the opportunity to employ magnetic or semi-magnetic wedges in surface-mounted permanent magnet machines with fractional-slot concentrated winding has been evaluated in this paper, with the aim to reduce the power losses, especially in the magnets. Since an analytical calculation is not sufficient for this evaluation, finite element methods with two different software have been employed, by using a model experimentally validated on a real motor. The effects of wedges with different values of permeability and different magnetization characteristics have been evaluated on flux density, back electromotive force, and inductances, in order to choose the more suitable wedge for the considered motor. Furthermore, a new wedge consisting of different portions of materials with different magnetic permeability values is proposed. The effects of both conventional and unconventional magnetic wedges were assessed to optimize the motor performance in all working conditions

    Similar works