CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Diurnal temperature and pressure effects on axial turbo-machinery stability in solid oxide fuel cell-gas turbine hybrid systems
Authors
J Brouwer
JD Maclay
GS Samuelsen
Publication date
1 January 2009
Publisher
eScholarship, University of California
Doi
Cite
Abstract
A dynamic model of a 100 MW solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system has been developed and subjected to perturbations in diurnal ambient temperature and pressure as well as load sheds. The dynamic system responses monitored were the fuel cell electrolyte temperature, gas turbine shaft speed, turbine inlet temperature and compressor surge. Using a control strategy that primarily focuses on holding fuel cell electrolyte temperature constant and secondarily on maintaining gas turbine shaft speed, safe operation was found to occur for expected ambient pressure variation ranges and for ambient temperature variations up to 28 K, when tested non-simultaneously. When ambient temperature and pressure were varied simultaneously, stable operation was found to occur when the two are in phase but not when the two are out of phase. The latter case leads to shaft over-speed. Compressor surge was found to be more likely when the system is subjected to a load shed initiated at minimum ambient temperature rather than at maximum ambient temperature. Fuel cell electrolyte temperature was found to be well-controlled except in the case of shaft overspeeds. Turbine inlet temperature remained in safe bounds for all cases. Copyright © 2009 by ASME
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 01/04/2019