INVESTIGATION ON CYLINDRICAL GATE ALL AROUND (GAA) TO NANOWIRE MOSFET FOR CIRCUIT APPLICATION

Abstract

Undoped cylindrical gate all around (GAA) MOSFET is a radical invention and a potential candidate to replace conventional MOSFET, as it introduces new direction for transistor scaling. In this work, the sensitivity of process parameters like channel length (Lg), channel thickness (tSi), and gate work function (φM) on various performance metrics of an undoped cylindrical GAA to nanowire MOSFET are systematically analyzed. The electrical characteristics such as on current (Ion), subthreshold leakage current (Ioff), threshold voltage (Vth) and similarly analog/RF performances like transconductance (gm), total gate capacitance (Cgg), and cut-off frequency (fT) are evaluated and studied with the variation of device design parameters. The discussion give direction towards low standby operating power (LSTP) devices as improvement in Ioff is approaching 90% in nanowire MOSFET. All the device performances of undoped GAA MOSFET are investigated through Sentaurus device simulator from Synopsis Inc

    Similar works