CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans
Authors
Derek B.J. Bone
Doo Sup Choi
+8 more
S. Jeffrey Dixon
Maria Drangova
James R. Hammond
David W. Holdsworth
Hisataka Ii
Diana Quinonez
Cheryle A. Séguin
Sumeeta Warraich
Publication date
1 May 2013
Publisher
Scholarship@Western
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy, characterized by ectopic calcification of spinal tissues. Symptoms include spine pain and stiffness, and in severe cases dysphagia and spinal cord compression. The etiology of DISH is unknown and there are no specific treatments. Recent studies have suggested a role for purine metabolism in the regulation of biomineralization. Equilibrative nucleoside transporter 1 (ENT1) transfers hydrophilic nucleosides, such as adenosine, across the plasma membrane. In mice lacking ENT1, we observed the development of calcified lesions resembling DISH. By 12 months of age, ENT1-/- mice exhibited signs of spine stiffness, hind limb dysfunction, and paralysis. Micro-computed tomography (μCT) revealed ectopic mineralization of paraspinal tissues in the cervical-thoracic region at 2 months of age, which extended to the lumbar and caudal regions with advancing age. Energy-dispersive X-ray microanalysis of lesions revealed a high content of calcium and phosphorus with a ratio similar to that of cortical bone. At 12 months of age, histological examination of ENT1-/- mice revealed large, irregular accumulations of eosinophilic material in paraspinal ligaments and entheses, intervertebral discs, and sternocostal articulations. There was no evidence of mineralization in appendicular joints or blood vessels, indicating specificity for the axial skeleton. Plasma adenosine levels were significantly greater in ENT1 -/- mice than in wild-type, consistent with loss of ENT1 - a primary adenosine uptake pathway. There was a significant reduction in the expression of Enpp1, Ank, and Alpl in intervertebral discs from ENT1-/- mice compared to wild-type mice. Elevated plasma levels of inorganic pyrophosphate in ENT1-/- mice indicated generalized disruption of pyrophosphate homeostasis. This is the first report of a role for ENT1 in regulating the calcification of soft tissues. Moreover, ENT1-/- mice may be a useful model for investigating pathogenesis and evaluating therapeutics for the prevention of mineralization in DISH and related disorders. © 2013 American Society for Bone and Mineral Research. Copyright © 2013 American Society for Bone and Mineral Research
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Scholarship@Western
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.lib.uwo.ca:paedpub-3162
Last time updated on 08/10/2022