Previsão da tendência da bitcoin utilizando extração de sentimentos do Twitter

Abstract

Bitcoin is the first decentralized digital currency constituting a successful alternative economic system. As a result, the Bitcoin financial market occupies an important position in society, where it has gained increasing popularity. The correct prediction of this type of market can drastically reduce losses and maximize investor profits. One of the most popular aspects of predicting the cryptocurrency market is the analysis of sentiment in posts shared publicly on social networks. Currently, the Twitter platform generates millions of posts a day, which has attracted several researchers in search of problem solving using sentimental analysis in tweets. With this evolution, it is intended to develop, through Artificial Intelligence (AI) techniques, models capable of predicting the Bitcoin trend based on daily sentimental analysis of posts made on the Twitter platform with Bitcoin’s historical data. Specifically, it is intended to assess whether sentiment positively influences the Bitcoin trend, and whether positive, neutral and negative feelings positively influence the Bitcoin trend in the same way. Finally, it is also objective to assess whether indicators such as market volume and the volume of tweets carried out within the scope of the Bitcoin theme positively influence its trend. To validate the potential of the study, two AI models were developed. The first model was created to classify the sentiments of tweets into three typologies: positive, neutral and negative. This model focused on AI techniques based on Long Short Term Memory (LSTM), Bidirectional Long Short Term Memory (BI-LSTM) and Convolutional Neural Network (CNN). In turn, the second model was designed to classify Bitcoin’s future trends into strong uptrend, uptrend, downtrend and strong downtrend. In this sense, the model focused on AI techniques based on LSTM and Random Forest Classifier. In general, it was possible to achieve good performance in the development of sentiment classification models, achieving an accuracy value of 87 % in the LSTM and BI-LSTM models and 86% in the model based on CNN technology. Regarding the model focused on predicting the Bitcoin trend, it was possible to validate that sentiment positively influences the Bitcoin trend prediction. More interestingly, neutral sentiment volume has a more significant impact on Bitcoin trend prediction. The Random Forest Classifier technique proved to be the best, recording accuracy of 57.35% in predicting the Bitcoin trend. Removing the sentiment variable made it possible to verify a cadence of 15% to 20% in the Bitcoin trend forecast, which effectively validates that sentiment positively influences the trend forecast.A Bitcoin é considerada a primeira moeda digital descentralizada constituindo um sistema económico alternativo de sucesso. Em resultado, o mercado financeiro da Bitcoin ocupa uma posição importante na sociedade, onde tem vindo a angariar cada vez mais popularidade. Prever acertadamente este tipo de mercado pode reduzir drasticamente as perdas e maximizar os lucros dos investidores. Um dos aspetos mais populares, quando se trata de prever o mercado de cryptomoedas, passa pela análise de sentimentos em posts partilhados publicamente em redes sociais. Atualmente, a plataforma do Twitter, gera milhões de posts todos os dias, o que tem atraído diversos investigadores na procura de resoluções de problemas com recurso à análise sentimental em tweets. Com esta evolução, pretende-se desenvolver através de técnicas de Inteligência Artificial (IA), modelos capazes de prever a trend da Bitcoin com base numa análise sentimental diária dos posts efetuados na plataforma do Twitter com os dados históricos da Bitcoin. Em específico, tenciona-se avaliar se o sentimento influencia positivamente a trend da Bitcoin, bem como avaliar se os sentimentos positivos, neutros e negativos, de forma isolada, influenciam da mesma forma positivamente a trend da Bitcoin. Por fim, é ainda objetivo, avaliar se indicadores como o volume de mercado e o volume de tweets realizado no âmbito do tema da Bitcoin influenciam positivamente a trend da mesma. De forma a validar o potencial do estudo, foram desenvolvidos dois modelos de IA. O primeiro modelo foi criado para efetuar a classificação de sentimentos dos tweets em três tipologias: positivos, neutros e negativos. Este modelo, focou-se em técnicas de IA basedas em LSTM, BI-LSTM e CNN. Por sua vez, o segundo modelo foi elaborado para classificar as trends futuras da Bitcoin em quatro tipologias: strong uptrend, uptrend, downtrend e strong downtrend. Neste sentido, o modelo focou-se em técnicas de IA baseadas em LSTM e Random Forest Classifier. Em geral, foi possível atingir uma boa performance no desenvolvimento dos modelos de classificação de sentimento, atingindo um valor de accuracy de 87% nos modelos LSTM e BI-LSTM, e 86% no modelo baseado na técnica de CNN. Em relação ao modelo focado em prever a trend da Bitcoin, foi possível validar que o sentimento realmente influencia positivamente a previsão da trend da Bitcoin. Mais curiosamente, verificou-se que o volume de sentimento neutro tem um impacto mais significativo na previsão da trend da Bitcoin. A técnica Random Forest Classifier demonstrou ser a melhor, registando uma accuracy de 57,35% na previsão da trend da Bitcoin. Ao remover a variável sentimento foi possível verificar uma cadência de 15% a 20% na previsão da trend da Bitcoin, o que valida efetivamente que o sentimento influencia positivamente a previsão da trend

    Similar works