Supervised learning has been widely used for attack categorization, requiring
high-quality data and labels. However, the data is often imbalanced and it is
difficult to obtain sufficient annotations. Moreover, supervised models are
subject to real-world deployment issues, such as defending against unseen
artificial attacks. To tackle the challenges, we propose a semi-supervised
fine-grained attack categorization framework consisting of an encoder and a
two-branch structure and this framework can be generalized to different
supervised models. The multilayer perceptron with residual connection is used
as the encoder to extract features and reduce the complexity. The Recurrent
Prototype Module (RPM) is proposed to train the encoder effectively in a
semi-supervised manner. To alleviate the data imbalance problem, we introduce
the Weight-Task Consistency (WTC) into the iterative process of RPM by
assigning larger weights to classes with fewer samples in the loss function. In
addition, to cope with new attacks in real-world deployment, we propose an
Active Adaption Resampling (AAR) method, which can better discover the
distribution of unseen sample data and adapt the parameters of encoder.
Experimental results show that our model outperforms the state-of-the-art
semi-supervised attack detection methods with a 3% improvement in
classification accuracy and a 90% reduction in training time.Comment: Tech repor