CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
A hierarchical framework for mapping pollination ecosystem service potential at the local scale
Authors
Benjamin Burkhard
Tim Diekötter
Jens Groß
Marie Perennes
Publication date
1 January 2021
Publisher
Amsterdam [u.a.] : Elsevier Science
Doi
Cite
Abstract
Wild bees play a major role in the cultivation of crops for human use, in the reproduction of many wild plants and are a key component of biodiversity. Mainly due to human activities, wild bees, like other insects, face a rapid decline in Europe. Understanding species distribution can help to design efficient conservation measures. Species distribution can also be used to estimate pollination ecosystem service potential, which can benefit the production of crops relying on pollination and the reproduction of wild plant communities. The presence of pollinators depends on a combination of environmental and biotic factors, each playing a determining role at different spatial scales. We therefore developed a model composed as a hierarchical framework for environmental predictors: climatic data and Land Use/Land Cover (LULC) variables at the European scale and species-specific habitat information at the local scale. The model combines the advantages of two different existing approaches: pollinator species distribution predictions based on their environmental requirements and knowledge on bee species life-history traits and habitats. This paper presents the predicted distribution of twenty-five wild bee species of the Andrena genus in an agricultural region in Northern Germany. We used oilseed rape pollinators as a case study and compared the potential pollination services to the potential demand in the Case Study Area. The developed framework allows to determine the capacity of landscapes to support pollination ecosystem services from wild bees at the local scale, which can support the identification of vulnerable areas and the design of local scale measures for habitat improvement and for conservation. The hierarchical approach leaves potential for further adaptations in order to improve the prediction of wild bee species dynamics and factors influencing their spatial distribution. © 202
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Institutionelles Repositorium der Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repo.uni-hannover.de:1...
Last time updated on 01/11/2022