Computer-Aided Assembly Sequence Planning for High-Mix Low-Volume Products in the Electronic Appliances Industry

Abstract

Electronic appliance manufacturers are facing the challenge of frequent product orders. Based on each product order, the assembly process and workstations need to be planned. An essential part of the assembly planning is defining the assembly sequence, considering the mechanical product’s design, and handling of the product’s components. The assembly sequence determines the order of processes for each workstation, the overall layout, and thereby time and cost. Currently, the assembly sequence is decided by industrial engineers through a manual approach that is time-consuming, complex, and requires technical expertise. To reduce the industrial engineers’ manual effort, a Computer-Aided Assembly Sequence Planning (CAASP) system is proposed in this paper. It compromises the components for a comprehensive system that aims to be applied practically. The system uses Computer-Aided Design (CAD) files to derive Liaison and Interference Matrices that represent a mathematical relationship between parts. Subsequently, an adapted Ant Colony Optimization Algorithm generates an optimized assembly sequence based on these relationships. Through a web browser-based application, the user can upload files and interact with the system. The system is conceptualized and validated using the CAD file of an electric motor example product. The results are discussed, and future work is outlined

    Similar works