Compression of DNA sequencing data

Abstract

With the release of the latest generations of sequencing machines, the cost of sequencing a whole human genome has dropped to less than US$1,000. The potential applications in several fields lead to the forecast that the amount of DNA sequencing data will soon surpass the volume of other types of data, such as video data. In this dissertation, we present novel data compression technologies with the aim of enhancing storage, transmission, and processing of DNA sequencing data. The first contribution in this dissertation is a method for the compression of aligned reads, i.e., read-out sequence fragments that have been aligned to a reference sequence. The method improves compression by implicitly assembling local parts of the underlying sequences. Compared to the state of the art, our method achieves the best trade-off between memory usage and compressed size. Our second contribution is a method for the quantization and compression of quality scores, i.e., values that quantify the error probability of each read-out base. Specifically, we propose two Bayesian models that are used to precisely control the quantization. With our method it is possible to compress the data down to 0.15 bit per quality score. Notably, we can recommend a particular parametrization for one of our models which—by removing noise from the data as a side effect—does not lead to any degradation in the distortion metric. This parametrization achieves an average rate of 0.45 bit per quality score. The third contribution is the first implementation of an entropy codec compliant to MPEG-G. We show that, compared to the state of the art, our method achieves the best compression ranks on average, and that adding our method to CRAM would be beneficial both in terms of achievable compression and speed. Finally, we provide an overview of the standardization landscape, and in particular of MPEG-G, in which our contributions have been integrated.Mit der Einführung der neuesten Generationen von Sequenziermaschinen sind die Kosten für die Sequenzierung eines menschlichen Genoms auf weniger als 1.000 US-Dollar gesunken. Es wird prognostiziert, dass die Menge der Sequenzierungsdaten bald diejenige anderer Datentypen, wie z.B. Videodaten, übersteigen wird. Daher werden in dieser Arbeit neue Datenkompressionsverfahren zur Verbesserung der Speicherung, Übertragung und Verarbeitung von Sequenzierungsdaten vorgestellt. Der erste Beitrag in dieser Arbeit ist eine Methode zur Komprimierung von alignierten Reads, d.h. ausgelesenen Sequenzfragmenten, die an eine Referenzsequenz angeglichen wurden. Die Methode verbessert die Komprimierung, indem sie die Reads nutzt, um implizit lokale Teile der zugrunde liegenden Sequenzen zu schätzen. Im Vergleich zum Stand der Technik erzielt die Methode das beste Ergebnis in einer gemeinsamen Betrachtung von Speichernutzung und erzielter Komprimierung. Der zweite Beitrag ist eine Methode zur Quantisierung und Komprimierung von Qualitätswerten, welche die Fehlerwahrscheinlichkeit jeder ausgelesenen Base quantifizieren. Konkret werden zwei Bayes’sche Modelle vorgeschlagen, mit denen die Quantisierung präzise gesteuert werden kann. Mit der vorgeschlagenen Methode können die Daten auf bis zu 0,15 Bit pro Qualitätswert komprimiert werden. Besonders hervorzuheben ist, dass eine bestimmte Parametrisierung für eines der Modelle empfohlen werden kann, die – durch die Entfernung von Rauschen aus den Daten als Nebeneffekt – zu keiner Verschlechterung der Verzerrungsmetrik führt. Mit dieser Parametrisierung wird eine durchschnittliche Rate von 0,45 Bit pro Qualitätswert erreicht. Der dritte Beitrag ist die erste Implementierung eines MPEG-G-konformen Entropie-Codecs. Es wird gezeigt, dass der vorgeschlagene Codec die durchschnittlich besten Kompressionswerte im Vergleich zum Stand der Technik erzielt und dass die Aufnahme des Codecs in CRAM sowohl hinsichtlich der erreichbaren Kompression als auch der Geschwindigkeit von Vorteil wäre. Abschließend wird ein Überblick über Standards zur Komprimierung von Sequenzierungsdaten gegeben. Insbesondere wird hier auf MPEG-G eingangen, da alle Beiträge dieser Arbeit in MPEG-G integriert wurden

    Similar works