A study of Machine Learning models for Clinical Coding of Medical Reports at CodiEsp 2020

Abstract

The task of identifying one or more diseases associated with a patient’s clinical condition is often very complex, even for doctors and specialists. This process is usually time-consuming and has to take into account different aspects of what has occurred, including symptoms elicited and previous healthcare situations. The medical diagnosis is often provided to patients in the form of written paper without any correlation with a national or international standard. Even if the WHO (World Health Organization) released the ICD10 international glossary of diseases, almost no doctor has enough time to manually associate the patient’s clinical history with international codes. The CodiEsp task at CLEF 2020 addressed this issue by proposing the development of an automatic system to deal with this task. Our solution investigated different machine learning strategies in order to identify an approach to face that challenge. The main outcomes of the experiments showed that a strategy based on BERT for pre-filtering and one based on BiLSTMCNN-SelfAttention for classification provide valuable results. We carried out several experiments on a subset of the training set for tuning the final model submitted to the challenge. In particular, we analyzed the impact of the algorithm, the input encoding strategy, and the thresholds for multi-label classification. A set of experiments has been carried out also during a post hoc analysis. The experiments confirmed that the strategy submitted to the CodiEsp task is the best performing one among those evaluated, and it allowed us to obtain a final mean average error value on the test set equal to 0.202. To support future developments of the proposed approach and the replicability of the experiments we decided to make the source code publicly accessible

    Similar works