In the framework of physical Human-Robot Interaction
(pHRI), methodologies and experimental tests are
presented for the problem of detecting and reacting to collisions
between a robot manipulator and a human being. Using a
lightweight robot that was especially designed for interactive
and cooperative tasks, we show how reactive control strategies
can significantly contribute to ensuring safety to the human
during physical interaction. Several collision tests were carried
out, illustrating the feasibility and effectiveness of the proposed
approach. While a subjective “safety” feeling is experienced by
users when being able to naturally stop the robot in autonomous
motion, a quantitative analysis of different reaction strategies
was lacking. In order to compare these strategies on an objective
basis, a mechanical verification platform has been built. The
proposed collision detection and reactions methods prove to
work very reliably and are effective in reducing contact forces
far below any level which is dangerous to humans. Evaluations
of impacts between robot and human arm or chest up to a
maximum robot velocity of 2.7 m/s are presented