Multi-wavelength study of the galactic PeVatron candidate LHAASO J2108+5157

Abstract

LHAASO J2108+5157 is one of the few known unidentified Ultra-High-Energy (UHE) gamma-ray sources with no Very-High-Energy (VHE) counterpart, recently discovered by the LHAASO collaboration. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its High-Energy (HE) counterpart 4FGL J2108.0+5155. We found an excess (3.7 sigma) in the LST-1 data at energies E > 3 TeV. Further analysis in the whole LST-1 energy range assuming a point-like source, resulted in a hint (2.2 sigma) of hard emission which can be described with a single power law with photon index Gamma = 1.6 +- 0.2 between 0.3 - 100 TeV. We did not find any significant extended emission which could be related to a Supernova Remnant (SNR) or Pulsar Wind Nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. The LST-1 and LHAASO observations can be explained as inverse Compton dominated leptonic emission of relativistic electrons with cutoff energy of 100+70-30 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a hypothesis of Geminga-like pulsar, which would be able to power the VHE-UHE emission. LST-1 and Fermi-LAT upper limits impose strong constraints on hadronic scenario of pi-0 decay dominated emission from accelerated protons interacting with nearby molecular clouds, requiring hard spectral index, which is incompatible with the standard diffusive acceleration scenario

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 31/10/2022