MCDHF calculations of isotope shifts in neutral antimony

Abstract

Ab initio multiconfiguration Dirac–Hartree–Fock (MCDHF) calculations have been carried out in order to determine the isotope shift (IS) electronic parameters of transitions belonging to electric dipole (E1) transition arrays 5s25p3−5s25p26s, 5s25p26s−5s25p26p and 5s25p26s−5s25p27p in neutral antimony, Sb I. In a correlation model limited to single and double excitations from the valence shells, these parameters, combined with the changes in mean-square nuclear charge radius δ⟨r2⟩123,121 compiled by Angeli and Marinova [3] produce isotope shifts values in good agreement with the most recent measurements by high-resolution emission and optogalvanic absorption spectroscopy of Sobolewski et al. [5] but not with the old measurements of Buchholz et al. [4] for 5p3−5p26s. However, our analysis does not allow to reject the latter due to the large uncertainty affecting δ⟨r2⟩123,121, i.e. 0.072 ± 0.048 fm2 [3]. This shows the need of a more accurate determination of this nuclear parameter. Although improving excitation energies, the inclusion of core-valence correlation limited to one hole in the 4d core subshell destroyed the theory-experiment agreement on the IS parameters. © 2018 Elsevier LtdInteruniversity Attraction Poles Programm

    Similar works

    Full text

    thumbnail-image