research

On Damage Characterization of a Steel Sheet

Abstract

Ductile damage is a physical phenomena which involves progressive deterioration of mechanical properties of metals, when undergoing high deformations. Compared to plasticity, the physical mechanisms behind damage are more complex and the microscale is not longer negligible. In mathematical damage models, founding an optimal set of material parameters can be a hard task due to the strong coupling and non-linearity of the equations. An identification strategy is then crucial to arrive to a general set of parameters. Therefore, we address the fully characterization of a ferritic steel sheet, involving the elasto-plastic and damage parameters. This poster presents an hybrid experimental-numerical procedure, coupling numerical simulations, optimization algorithms and digital image correlation measurements, over a set of representative experimental and numerical results of tensile, shear and plane strain tests in different material directions. Due to the small thickness of the sheet, the constitutive model is very prone to localization into a shear band difficulting the damage parameters identification. It is found that a porosity induced inhomogeneity plus a mixed hardening can delay localization and represent the entire deformation range of the tests, leading to acceptable results. Different set of parameters are also obtained and then validated with experimental results. This localization phenomena should be carefully considered in applications involving complex strain paths

    Similar works

    Full text

    thumbnail-image