research

Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2

Abstract

Despite their moderately-sized surface area, continental marginal seas play a significant role in the biogeochemical cycles of carbon, as they receive huge amounts of upwelled and riverine inputs of carbon and nutrients, sustaining a disproportionate large biological activity compared to their relative surface area. A synthesis of worldwide measurements of the partial pressure of CO2 (pCO2) indicates that most open shelves in the temperate and high latitude regions are under-saturated with respect to atmospheric CO2 during all seasons, although the low latitude shelves seem to be over-saturated. Most inner estuaries and near-shore coastal areas on the other hand are over-saturated with respect to atmospheric CO2. The scaling of air-sea CO2 fluxes based on pCO2 measurements and carbon mass balance calculations indicate that the continental shelves absorb atmospheric CO2 ranging between 0.33 to 0.36 Pg C yr-1 that corresponds to an additional sink of 27% to ~30% of the CO2 uptake by the open oceans based on the most recent pCO2 climatology (Takahashi et al., 2008; Deep-Sea Research II, this issue). Inner estuaries, salt marshes and mangroves emit up to 0.50 Pg C yr-1, although these estimates are prone to large uncertainty due to poorly constrained ecosystem surface area estimates. Nevertheless, the view of continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 allows reconciling long-lived opposing views on carbon cycling in the coastal ocean

    Similar works

    Full text

    thumbnail-image