Modelling orbital climate signals in fluvial stratigraphy

Abstract

There are certain orbital cycles influencing the relative position and location of the earth towards the sun, resulting in the cyclic insolation received on the earth, which causes climate changes and subsequent environmental response in the catchment, including precipitation, temperature, and vegetation, and so on. Furthermore, such catchment responses induce cyclic variation of source materials, including sediment supply and water discharge in the entry of a fluvial basin. Climate change related to the 21-kyr precession cycle was proposed as the driver of regularly-alternating river avulsion and overbank phases in the Eocene Willwood Formation, Bighorn Basin, Wyoming, USA 1-2. This study aims to simulate the building-up process of fluvial stratigraphy under the action of precession.Applied Geolog

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 07/05/2019